Are you ready for math 112?

1. Consider the linear equation: \(4x + 3y - 15 = 0\)
 a. Put the equation in slope intercept form
 b. State the slope
 c. State the coordinate of the y-intercept
 d. Give the exact coordinate for the x-intercept
 e. Graph the line

2. Find the equation of a line passing through points:
 (-5,4) & (5,8)

3. Consider the data in the chart concerning the weight of channel iron

<table>
<thead>
<tr>
<th>Channel iron lengths and weights chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (x)</td>
</tr>
<tr>
<td>Weight (y)</td>
</tr>
</tbody>
</table>

 a. Find a linear model for the relationship by hand using the longest and shortest lengths.
 b. Use the regression function in your calculator to find a linear model (equation) for the relationship between length (x) and weight (y).
 c. Use the regression equation to predict the weight of a 62 foot length of channel iron.
 d. Use the regression equation to predict the length of channel iron weighing 784 lbs.

4. Solve the equation: \(6.2(2x - 7) + 10.24 = 9 - 4(3x - 4.1)\)

5. Solve the equation: \(3x - 2 = \frac{2}{5} - \frac{5x - 2}{4}\)

6. Find the equation for the circle in standard form.

7. Change the equation of the circle to standard form: \(x^2 + y^2 - 8x + 14y + 29 = 0\)
8. Find the equation for the ellipse in standard form.

9. Find exact zeros for the function \(f(x) = x^3 - x^2 - 22x - 8 \)

10. Solve (rounded to 2 decimal places): \(12 - 4\ln(x-3) = 5 \)

11. Calculate the interest rate necessary for $760 to grow to $980 in 4 years compounded continuously.
 Use the compound interest formula: \(A = Pe^{rt} \), where \(A \) = final amount, \(P \) = starting amount, \(r \) = interest rate, and \(t \) = time in years.

12. Solve the system by substitution: \(y = 2x^2 - 3x + 4 \)
 \[7x - y = 8 \]

13. A river flows at 384 cfs at 6:00 am, then at 786 cfs at 11:00 am. Use the exponential function:
 \(A = A_0e^{kt} \), where \(A \) = final amount, \(A_0 \) = initial amount, \(k \) = rate of change and \(t \) = time in hours. Find a function for \(A(t) \) and use it to find the time the river will reach 1200 cfs.

14. Solve the system by elimination:
 \[-2x - 3y + 5z = 13 \]
 \[4x - 2y - 6z = 2 \]
 \[3x + 4y - z = 1 \]

Solutions:
1. a. \(y = -\frac{4}{3}x + 5 \) b. \(-\frac{4}{3} \) c. \((0,5)\) d. \((3\frac{3}{4},0)\) e.

2. \(y = \frac{2}{5}x + 6 \) 3. a. \(y = 10.24x - 42.56 \) b. \(y = 10.18x - 39.98 \) c. 591 lbs. d. 81 feet 4. \(x = 2.4 \) 5. \(\frac{58}{85} \)

6. \((x + 4)^2 + (y + 3)^2 = 49 \) 7. \((x - 4)^2 + (y + 7)^2 = 36 \) 8. \(\frac{(x-6)^2}{49} + \frac{(y-2)^2}{81} = 1 \) 9. \(x = -4 \& \frac{5\pm\sqrt{33}}{2} \)
10. \(x \approx 8.75 \) 11. \(r \approx 6.4\% \) 12. \((2,6)\) \& \((3,13)\) 13. \(A(t) = 384e^{\frac{143t}{2}} \) \(t \approx 7.97 \) or 1:58 pm 14. \((4,-2,3)\)