1. Consider the linear equation: \(4x + 3y - 15 = 0 \)
 a. Put the equation in slope intercept form
 b. State the slope
 c. State the coordinate of the y-intercept
 d. Give the exact coordinate for the x-intercept
 e. Graph the line

2. Find the equation of a line passing through points:
 \((-5, 4) \& (5, 8)\)

3. Consider the data in the chart concerning the weight of channel iron

<table>
<thead>
<tr>
<th>Channel iron lengths and weights chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (x) 19 feet 23 feet 37 feet 44 feet</td>
</tr>
<tr>
<td>Weight (y) 152 lbs 196 lbs 336 lbs 408 lbs</td>
</tr>
</tbody>
</table>

 a. Find a linear model for the relationship by hand using the longest and shortest lengths.
 b. Use the regression function in your calculator to find a linear model (equation) for the relationship between length (x) and weight (y).
 c. Use the regression equation to predict the weight of a 62 foot length of channel iron.
 d. Use the regression equation to predict the length of channel iron weighing 784 lbs.

4. Solve the equation: \(6.2(2x - 7) + 10.24 = 9 - 4(3x - 4.1) \)

5. Solve the equation: \(3x - 2 = \frac{2}{5} - \frac{5x - 2}{4} \)

6. Find the equation for the circle in standard form.

7. Change the equation of the circle to standard form: \(x^2 + y^2 - 8x + 14y + 29 = 0 \)
8. Find the equation for the ellipse in standard form.

9. Find exact zeros for the function \(f(x) = x^3 - x^2 - 22x - 8 \)

10. Solve (rounded to 2 decimal places): \(12 - 4\ln(x-3) = 5 \)

11. Calculate the interest rate necessary for $760 to grow to $980 in 4 years compounded continuously.
 Use the compound interest formula: \(A = Pe^{rt} \), where \(A \) = final amount, \(P \) = starting amount, \(r \) = interest rate, and \(t \) = time in years.

12. Solve the system by substitution:
 \[
 y = 2x^2 - 3x + 4 \\
 7x - y = 8
 \]

13. A river flows at 384 cfs at 6:00 am, then at 786 cfs at 11:00 am. Use the exponential function:
 \(A = A_0e^{kt} \), where \(A \) = final amount, \(A_0 \) = initial amount, \(k \) = rate of change and \(t \) = time in hours. Find a function for \(A(t) \) and use it to find the time the river will reach 1200 cfs.

14. Solve the system by elimination:
 \[
 -2x - 3y + 5z = 13 \\
 4x - 2y - 6z = 2 \\
 3x + 4y - z = 1
 \]

Solutions:
1. a. \(y = \frac{4}{3}x + 5 \) b. \(-\frac{4}{3} \) c. (0,5) d. \(\left(3, \frac{3}{4}, 0 \right) \) e.

2. \(y = \frac{2}{5}x + 6 \) 3. a. \(y = 10.24x - 42.56 \) b. \(y = 10.18x - 39.98 \) c. 591 lbs. d. 81 feet 4. \(x = 2.4 \) 5. \(\frac{58}{85} \)

6. \((x + 4)^2 + (y + 3)^2 = 49 \) 7. \((x - 4)^2 + (y + 7)^2 = 36 \) 8. \(\frac{(x-6)^2}{49} + \frac{(y-2)^2}{81} = 1 \) 9. \(x = -4 \& \frac{5\pm\sqrt{33}}{2} \)

10. \(x \approx 8.75 \) 11. \(r \approx 6.4\% \) 12. (2,6) & (3,13) 13. \(A(t) = 384e^{\frac{343t}{t}} \) t \(\approx 7.97 \) or 1:58 pm 14. (4,-2,3)
Material from math 112

1. Sketch a right triangle or use a Pythagorean identity to find the exact value for \(\tan \theta \) if \(\sin \theta = -\frac{6}{9} \) in quadrant III.

2. Use the unit circle to find both exact values for \(\theta \) between 0 and \(2\pi \) if \(\cos \theta = -\frac{\sqrt{3}}{2} \) in radians.

3. Use a sketch of a right triangle to find the exact value for \(\csc \left(\cot^{-1} \frac{12}{5} \right) \).

4. Find a sine equation for the graph. (each square is 1 unit)
 Recall that if \(y = a \sin \left[b(x + c) \right] + d; \)
 \(a = \) amplitude, \(\frac{2\pi}{b} = \) period, \(c = \) phase shift, and \(d = \) vertical shift.

5. \(\tan \theta = \left(-\frac{15}{8} \right) \) in the 2\(^{nd} \) quadrant , find the exact value: \(\sin (2\theta) \)

6. Verify the identity: \(\frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta} = \sin \theta (\cot \theta - \tan \theta) \)

7. Simplify the expression:\(\frac{\sec x \cot^2 x}{\csc x \cos^2 x + \sin x} \)

8. Solve the equation for all values between 0 and \(2\pi \): \(2 \cos \theta = 4 \sin \theta \cos \theta \)

9. Change the rectangular coordinate to a polar coordinate \((9,-4) \) \(0 < \theta < 360^\circ \)

10. Given that \(x = (\cos \theta)t \) & \(y = (\sin \theta)t - 16t^2 + h \); where \(t \) is the time in seconds, \(h \) is the arrow's initial height in feet and \(v \) is the arrow's initial velocity in feet per second.
 Find parametric equations to model the flight of an arrow shot 6 feet off the ground at 186 ft/sec at an angle of 32\(^{\circ} \) from the horizontal in order to find the distance it will travel before hitting the ground.

11. Solve the triangle: \(a = 12, b = 23, c = 28 \)

12. Consider force vectors \(u \) & \(v \) acting on the same point. Find the resultant magnitude and angle \(\Theta \).
 \(||u|| = 340 \) pounds, \(\Theta = 26^\circ \)
 \(||v|| = 180 \) pounds, \(\Theta = 258^\circ \)

Solutions:
1. \(\frac{2\sqrt{5}}{5} \) 2. \(\frac{5\pi}{6}, \frac{7\pi}{6} \) 3. \(\frac{13}{5} \) 4. \(y = 5\sin \frac{\pi}{6}(x + 4) + 7 \) 5. \(-\frac{240}{289} \) 6. many answers 7. \(\cot x \)
8. \(\frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6} \) 9. \((9.8, 336^\circ)\) 10. \(x = 157.74t \) & \(y = 98.56t - 16t^2 + 6 \); approximately 981 feet
11. \(A = 24.8^\circ, B = 53.6^\circ, C = 101.6^\circ \) 12. \(||r|| = 269.5 \) lbs., \(\Theta = 354.2^\circ \)